Prehistory of the ASF+SDF System (1980-1984)

Dedicated to Cor Baayen

Jan Heering and Paul Klint

1 MONOLINGUAL BEGINNING

Our work on programming environments started in 1980 with the design of a
dedicated environment for the Summer programming language [1], an object-
oriented language with class definitions. Rather than a dedicated Summer en-
vironment, the general concept of a monolingual environment emerged [2]. In
such an environment, a single language is used in different modes. More specifi-
cally, we investigated the requirements an integrated command /programming/-
debugging language would have to satisfy. Since Summer had not been designed
with this particular purpose in mind, it is not surprising that a monolingual
environment for Summer would have involved a revision of the language. This
may have been one of the reasons we never “instantiated” the monolingual
concept for Summer, but there were other, more important, ones:

e At that time Leo Geurts, Lambert Meertens, and other members of the
Afdeling Informatica were developing the B language system (later re-
named to ABC), which had a monolingual character in the sense that the
command and programming modes of the system were integrated. "The
development of a monolingual environment for a suitably revised version

of Summer would have been a major effort without obvious additional
benefits.

e We started to realize that a monolingual environment would be a closed
world whose facilities could not be easily borrowed or reused by other lan-
suages. Since every application has its own language (however small), we
decided it would be much more efficient to develop a generic multilingual
environment. Its design was started in 1982.

2 A PROGRAMMING ENVIRONMENT BASED ON LANGUAGE DEFINITIONS

The idea was to base the generic environment on language definitions. These
would consist of a combined syntax/prettyprinting section and two additional
sections for static and dynamic semantics. The generic environment would sup-
port the interactive development of language definitions and their compilation
to language specific subenvironments. It would view language definitions as
libraries of language constructs from which individual constructs could be bor-
rowed or reused to facilitate the construction of new definitions. A language

341



needing an if-statement, for instance, would probably be able to borrow a suit-
able one from another language for which a definition already existed in the
systernn.

We had some experience with language definitions. Part of the semantics of
Summer had been described in a formalism consisting of BNF-like rules with
embedded variables to which semantic actions written in Summer itsellf were
attached [3|. Furthermore, Gert Florijn and Geert Rolf had written PGEN,
an LL(1) parser generator [4|. One of the things PGEN taught us was that
molding grammars to fit the LL(1) restriction was no fun. This influenced
our early decision to allow general context-free syntax in language definitions.
Aloysius Tan designed a VLSI-algorithm to reduce the parsing time in the
general context-free case to an acceptable value [5]. This was long before the
syntax definition formalism SDF and lazy/incremental parser generation.

In the meantime, Henk Kroeze had experimented with a combined syn-
tax /prettyprinting language for use in the first section of language dehinitions
6]. It turned out, however, that BNF rules with integrated prettyprint mstruc-
tions were unreadable, and this remained a problem.

Although the generic environment we had in mind obviously needed a built-
in semantics definition formalism (we did not yet know which one), it would
be possible to use any language for which a definition had been constructed
as a semantics definition formalism in the system. The corresponding towers
of language interpreters would be very inefficient, so they would have to be
flattened by the removal of intermediate layers. This we planned to do by
partial evaluation.

This system concept was discussed with Wim Bohm, Marleen Sint, and
Arthur Veen at several Data Flow Club meetings in 1982. It was subsequently
presented at the Colloquium Programmeeromgevingen in the fall of that year

3 ALGEBRAIC SPECIFICATION

The main decision facing us was what semantics definition method to use. The
without side-effects. Although denotational semantics would have been a natu-
ral choice, the closest we came to it was when we considered a statically scoped
version of Lisp as a semantics definition formalism.

Among the papers on partial evaluation we studied were several by Valentin
Turchin, which used the (string) rewrite rule language Refal, and we started
discussing rewrite rules with Jan Bergstra. He taught us the relation between
(term) rewrite rules and algebraic specifications. The fact that modularization
was an important topic in the algebraic specification community was attractive
to us in view of the modular construction of language definitions the generic
environment had to support.

Although the algebraic semantics of programming languages was not a well
developed subject, Jan Bergstra and Jan Willem Klop were working on process

342



algebra (the algebraic semantics of processes) and we somehow suspected that
algebraic specifications would be suitable for describing the static and dynamic
semantics of languages in the generic environment. We never considered using
different formalisms for static and dynamic semantics since we did not see a
clear distinction between them. In this we were perhaps influenced by the
monolingual concept discussed in Section 1. At a later stage, we started by not
making a distinction between lexical and context-free syntax description in the
syntax definition formalism SDF, but this proved untenable.

After a joint excursion into object-oriented algebraic specification [9], we set
out to give an algebraic definition of the toy language PICO. Since we did not
yet have a well-developed algebraic specification formalism, it was designed
simultaneously. This became ASF. The syntax definition formalism SDF did
not yet exist either, so the PICO definition included an algebraically specified
syntax of PICO and a parser.

The proper modularization of the PICO definition turned out to be a major
problem whose solution involved the repeated redesign of the module construc-
tion operators of ASF. The modularization finally adopted was very reasonable,
but it did not permit the reuse of individual PICO constructs in other language
definitions. In this respect we did not achieve one of our original goals and this
1s still an open problem.

In the meantime, partial evaluation had not been forgotten. Although its
algebraic semantics had not been studied in detail, it had been clear from the
outset that algebraic specification and term rewriting were excellent frame-
works for partial evaluation. As it turned out, partial evaluation involves the
notion of w-completeness of algebraic specifications. Somewhat ironically, the
idea to allow any language for which a definition had been constructed as a
semantics definition formalism in the system, which had been the main reason
for studying partial evaluation, was gradually abandoned with the advent of
algebraic specifications. Anyway, we finished both the PICO definition [10]
and the partial evaluation paper [11] virtually at the time the GIPE project
started in January 1985. At that time the implementation of ASF consisted
of a parser, a type checker, and a Structure Diagram generator, all of them
written in Summer using the PGEN parser generator mentioned before. Term
rewriting had not yet been implemented.

4 'TOwWARDS THE ESPRIT/GIPE PROJECT

In July 1983 Paul Klint had visited INRIA Rocquencourt where he had fa-
miliarized himself with several generic environments {12]. One of them was
the Mentor system which had been developed in the seventies by Véronique
Donzeau-Gouge, Gérard Huet, Gilles Kahn, Bernard Lang, and others at IN-
RIA [13]. In fact, Mentor was rather similar to what we had in mind for the
syntactic part of the generic environment. Furthermore, its extension towards
semantics had just begun with the development of the Typol language [14, 15],
bringing INRIA’s work even closer to ours.

343



Typol was based on Plotkin’s Structural Operational Semantics, but it may
be interesting to note that earlier experiments had been done with Formol,
an Ada-like specification language specially designed for writing denotational
semantics definitions of programming languages. Formol specifications were
considered too low-level, however, and denotational semantics was abandoned.

Paul’s visit did not immediately lead to further co-operation with INRIA,
but in the spring of 1984 Gilles Kahn proposed to submit a joint ESPRIT
proposal on the Generation of Interactive Programming Environments. For
INRIA, it would be basically an extension of Mentor with semantics facili-
ties. For us, it would be a continuation of our work on a generic environment
based on algebraic language definitions. The ensuing proposal (part of which
was later published [16]) was accepted by the European Communities and the
GIPE project started in January 1985 with the software companies BSO (The
Netherlands) and SEMA-METRA (France) as industrial partners. When it

ended 5 years later, GIPE II took over for another 4 years [17].

REFERENCES

1. P. Klint, From Spring to Summer, Ph.D. Thesis, TH Eindhoven, 1982.
Published as LNCS, Vol. 205, 1985.

2. J. Heering and P. Klint, Towards monolingual programming environments,
Report IW 185/81, Mathematisch Centrum, Amsterdam, December 1981.
Published in ACM Transactions on Programming Languages and Systems,
7 (1985), pp. 183-213.

3. P. Klint, Formal language definitions can be made practical, Report IW
159/81, Mathematisch Centrum, Amsterdam, 1981. Published in J.W. de
Bakker and J.C. van Vliet (Eds.), Algorithmic Languages, North-Holland,
1981, pp. 115-132, and in [1, Chapter 4].

4. G. Florijn and G. Rolf, PGEN—A general purpose parser generator, Report
IW 157/81, Mathematisch Centrum, Amsterdam, 1981.

o. H.D.A. Tan, VLSI-algoritmen voor herkenning van context-vrije talen in
lineaire tijd, Report IN 24/83, Mathematisch Centrum, Amsterdam, June
1983 (VLSI algorithms for the recognition of context-free languages in linear
time—in Dutch). See also: A. Nijholt, Overview of parallel parsing strate-
gies, in M. Tomita (Ed.), Current Issues in Parsing Technology, Kluwer
Academic, 1991, Section 14.4.2.

6. H. Kroeze, Een taalonafhankelijke benadering van prettyprinten, Report IN
21/82, Mathematisch Centrum, Amsterdam, December 1982 (A language
independent approach to prettyprinting—in Dutch).

7. J. Heering, Taaldefinities als kern voor een programmeeromgeving, in Collo-
qurum Programmeeromgevingen, MC Syllabus 30, Mathematisch Centrum,
Amsterdam, 1983, pp. 69-81 (A programming environment based on lan-
guage definitions—in Dutch).

8. P. Klint, Partié€le evaluatie als implementatiemethode voor een program-
meeromgeving, in Colloquium Programmeeromgevingen, MC Syllabus 30,

344



10.

11.

12.

13.

14.

195.

16.

Mathematisch Centrum, Amsterdam, 1983, pp. 83-100 (Partial evaluation
as an implementation method for a programming environment—in Dutch).

. J.A. Bergstra, J. Heering, and J.W. Klop, Object-oriented algebraic speci-

fication: proposal for a notation and 12 examples, Report CS-R8411, CWI,
Amsterdam, June 1984.

J.A. Bergstra, J. Heering, and P. Klint, Algebraic definition of a simple pro-
eramming language, Report CS-R8504, CWI, Amsterdam, February 1985.
Published in J.A. Bergstra, J. Heering, and P. Klint (Eds.), Algebraic Spec-
1fication, ACM Press Frontier Series, 1989, Chapter 2.

J. Heering, Partial evaluation and w-completeness of algebraic specifica-
tions, Report CS-R8501, CWI, Amsterdam, January 1985. Published in
Theoretical Computer Science, 43 (1986), 149-167.

P. Klint, A survey of three language-independent programming environ-
ments, Report IW 240/83, Mathematisch Centrum, Amsterdam, 1983.

V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang, Programming envi-
ronments based on structured editors: the Mentor experience, INRIA Re-
search Report No. 26, 1980. Published in D.R. Barstow, H.E. Shrobe, and
E. Sandewall (Eds.), Interactive Programming Environments, McGraw-Hill,
1984, pp. 128-140.

Th. Despeyroux and V. Donzeau-Gouge, Typol: Introduction de
spécifications sémantiques dans Mentor, INRIA Research Report, 1983 (Ty-
pol: Introduction of semantics specifications in Mentor—in French).

Th. Despeyroux, Executable specification of static semantics, INRIA Re-
search Report No. 295, 1984. Published in G. Kahn, D.B. MacQueen, and
G. Plotkin (Eds.), Semantics of Data Types, LNCS Vol. 173, Springer, 1984,
pp. 215-233.

J. Heering, G. Kahn, P. Klint, and B. Lang, Generation of interactive pro-
gramming environments, in The Commission of the European Communities

(Eds.), ESPRIT °85: Status Report of Continuing Work, Part 1, Elsevier
Science Publishers, 1986, pp. 467-477.

17. J. Heering and P. Klint, Work done at CWI/UvA—Final report, in: Sixth

Review Report ESPRIT Project 2177 (GIPE 1I), January 1994.

345



